INTEGRATED CIRCUITS

DATA SHEET

TDA8775 Triple 10-bit video Digital-to-Analog Converter (DAC)

Product specification Supersedes data of 1996 Aug 14

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

FEATURES

- 10-bit resolution
- · Sampling rate up to:
 - 50 MHz for normal mode; $R_L = 37.5 \Omega$
 - 35 MHz for LOW power mode; R_L = 150 Ω
- · Internal current reference
- Current reference selector for:
 - Normal mode; $R_L = 37.5 \Omega$ (typ.)
 - Low-power mode; $R_L = 150 \Omega$ (typ.).
- · No deglitching circuit required
- SYNC and BLANK control inputs
- 0.66 V output voltage range on red and blue channels
- 1 V output voltage range on green channel (including sync)
- BLANK control input on the 3 channels
- +5 V power supply.

APPLICATIONS

- General purpose high-speed digital-to-analog conversion
- Digital TV
- · Graphic display
- · Desktop video processing
- Set-top boxes
- · Video games.

GENERAL DESCRIPTION

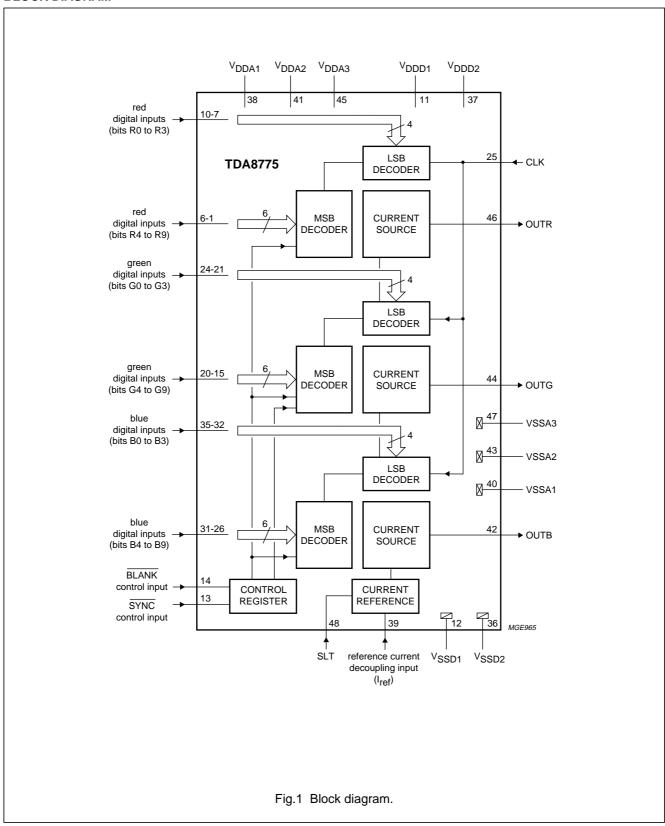
The TDA8775 consists of three 10-bit video Digital-to-Analog Converters (DACs). They convert the digital input signals into current outputs at a maximum conversion rate of 50 MHz.

The DACs are based on current source architecture with selectable current reference.

The devices are fabricated in a 5 V CMOS process that ensures high functionality with low power dissipation.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{DDA}	analog supply voltage		4.5	5.0	5.5	V
V_{DDD}	digital supply voltage		4.5	5.0	5.5	V
I _{DDA}	analog supply current	SLT = 1; $R_L = 37.5 \Omega$	_	67	85	mA
		SLT = 0; $R_L = 150 \Omega$	_	16	22	mA
I _{DDD}	digital supply current	SLT = 1; $R_L = 37.5 \Omega$	_	10	16	mA
		SLT = 0; $R_L = 150 \Omega$	_	5	13	mA
INL	DC integral non-linearity	SLT = 1; $R_L = 37.5 \Omega$	-2	_	+2	LSB
DNL	DC differential non-linearity	SLT = 1; $R_L = 37.5 \Omega$	-1	_	+1	LSB
INL	DC integral non-linearity	SLT = 0; $R_L = 150 \Omega$	-2	_	+2	LSB
DNL	DC differential non-linearity	SLT = 0; $R_L = 150 \Omega$	-1	_	+2.3	LSB
f _{clk(max)}	maximum clock frequency	SLT = 1; $R_L = 37.5 \Omega$	50	_	_	MHz
		SLT = 0; $R_L = 150 \Omega$	35	_	_	MHz
P _{tot}	total power dissipation	SLT = 1; $R_L = 37.5 \Omega$;	_	385	555.5	mW
		f _{clk} = 50 MHz				
		SLT = 0; $R_L = 150 \Omega$;	_	105	192.5	mW
		f _{clk} = 35 MHz				


ORDERING INFORMATION

TYPE		PACKAGE						
NUMBER	NAME	AME DESCRIPTION VERSIO						
TDA8775G	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2					

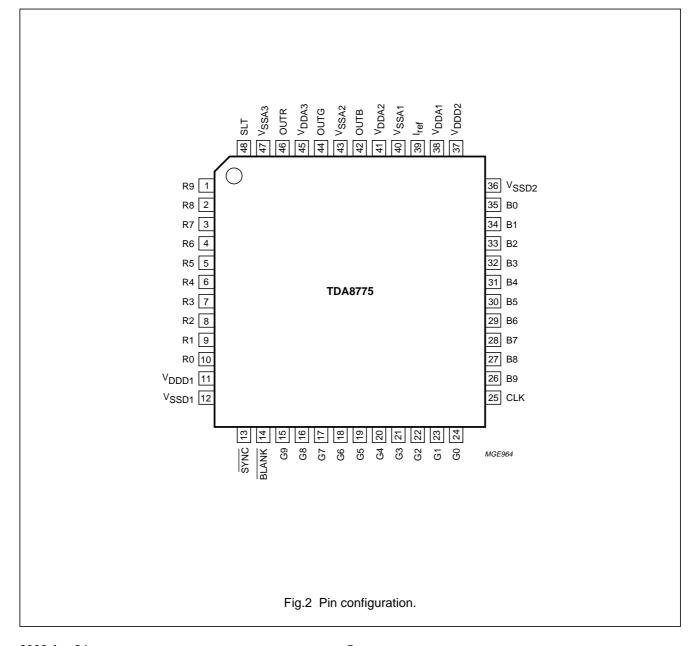
Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

BLOCK DIAGRAM

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775


PINNING

SYMBOL	PIN	DESCRIPTION
R9	1	red digital input data; bit 9 (MSB)
R8	2	red digital input data; bit 8
R7	3	red digital input data; bit 7
R6	4	red digital input data; bit 6
R5	5	red digital input data; bit 5
R4	6	red digital input data; bit 4
R3	7	red digital input data; bit 3
R2	8	red digital input data; bit 2
R1	9	red digital input data; bit 1
R0	10	red digital input data; bit 0 (LSB)
V _{DDD1}	11	digital supply voltage 1
V _{SSD1}	12	digital supply ground 1
SYNC	13	composite sync control input; for green channel only (active LOW)
BLANK	14	composite blank control input (active LOW)
G9	15	green digital input data; bit 9 (MSB)
G8	16	green digital input data; bit 8
G7	17	green digital input data; bit 7
G6	18	green digital input data; bit 6
G5	19	green digital input data; bit 5
G4	20	green digital input data; bit 4
G3	21	green digital input data; bit 3
G2	22	green digital input data; bit 2
G1	23	green digital input data; bit 1
G0	24	green digital input data; bit 0 (LSB)
CLK	25	clock input
B9	26	blue digital input data; bit 9 (MSB)
B8	27	blue digital input data; bit 8
B7	28	blue digital input data; bit 7
B6	29	blue digital input data; bit 6
B5	30	blue digital input data; bit 5
B4	31	blue digital input data; bit 4
B3	32	blue digital input data; bit 3
B2	33	blue digital input data; bit 2
B1	34	blue digital input data; bit 1
B0	35	blue digital input data; bit 0 (LSB)
V _{SSD2}	36	digital supply ground 2
V_{DDD2}	37	digital supply voltage 2
V _{DDA1}	38	analog supply voltage 1
I _{ref}	39	decoupling pin for reference current
V _{SSA1}	40	analog supply ground 1

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

SYMBOL	PIN	DESCRIPTION
V_{DDA2}	41	analog supply voltage 2
OUTB	42	blue analog output
V _{SSA2}	43	analog supply ground 2
OUTG	44	green analog output
V_{DDA3}	45	analog supply voltage 3
OUTR	46	red analog output
V _{SSA3}	47	analog supply ground 3
SLT	48	mode selection; normal mode, R _L = 37.5 Ω (active HIGH); low power mode, R _L = 150 Ω (active LOW)

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DDA}	analog supply voltage	-0.5	+6.5	V
V_{DDD}	digital supply voltage	-0.5	+6.5	V
ΔV_{DD}	supply voltage difference between V _{DDA} and V _{DDD}	-1.0	+1.0	V
T _{stg}	storage temperature	-55	+150	°C
T _{amb}	operating ambient temperature	0	70	°C
Tj	junction temperature	_	125	°C

THERMAL CHARACTERISTICS

SYMBOL	VALUE (TYP.)	UNIT	
R _{th j-a}	thermal resistance from junction to ambient in free air	72	K/W

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

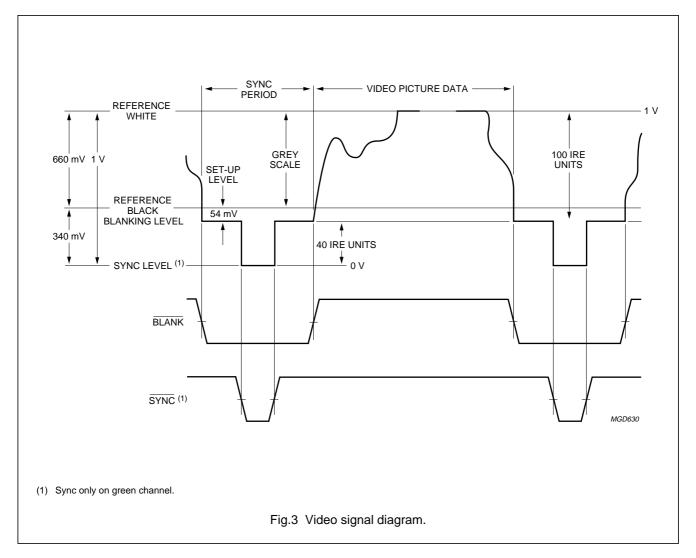
CHARACTERISTICS

TDA8775 operating at 50 MHz; SLT = 1 and R_L = 37.5 Ω . V_{DDA} = V_{DDD} = 4.5 to 5.5 V; V_{SSA} and V_{SSD} shorted together; V_{DDA} - V_{DDD} = -0.5 to +0.5 V; T_{amb} = 0 to +70 °C; typical values measured at V_{DDA} = V_{DDD} = 5 V and T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies			'	'		
V_{DDA}	analog supply voltage		4.5	5.0	5.5	V
V_{DDD}	digital supply voltage		4.5	5.0	5.5	V
I _{DDA}	analog supply current	SLT = 1; $R_L = 37.5 \Omega$	_	67	85	mA
		SLT = 0; $R_L = 150 \Omega$	_	16	22	mA
I _{DDD}	digital supply current	SLT = 1; $R_L = 37.5 \Omega$	_	10	16	mA
		SLT = 0; $R_L = 150 \Omega$	_	5	13	mA
Inputs						
CLOCK INP	UT (PIN 25)					
V _{IL}	LOW level input voltage		V _{SSD} - 0.5	_	0.8	V
V _{IH}	HIGH level input voltage		2.0	_	$V_{DDD} + 0.5$	V
BLANK AN	D SYNC INPUTS (PINS 13 AND 1	4; ACTIVE LOW)				
V _{IL}	LOW level input voltage		V _{SSD} - 0.5	_	0.8	V
V _{IH}	HIGH level input voltage		2.0	_	$V_{DDD} + 0.5$	V
R, G AND E	B DIGITAL INPUTS (PINS 1 TO 10,	15 TO 24 AND 26 TO 35)	•		•	•
V _{IL}	LOW level input voltage		V _{SSD} - 0.5	_	0.8	V
V _{IH}	HIGH level input voltage		2.0	_	$V_{DDD} + 0.5$	V

Triple 10-bit video Digital-to-Analog Converter (DAC)

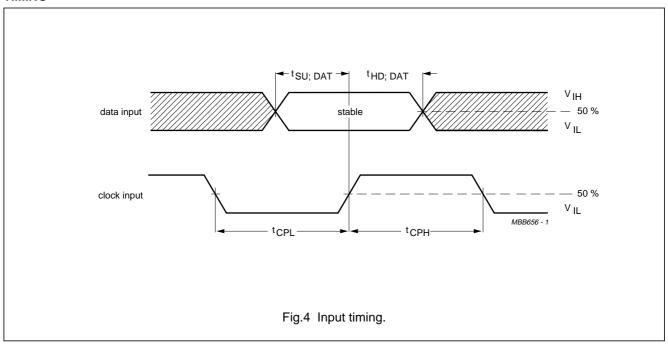
TDA8775

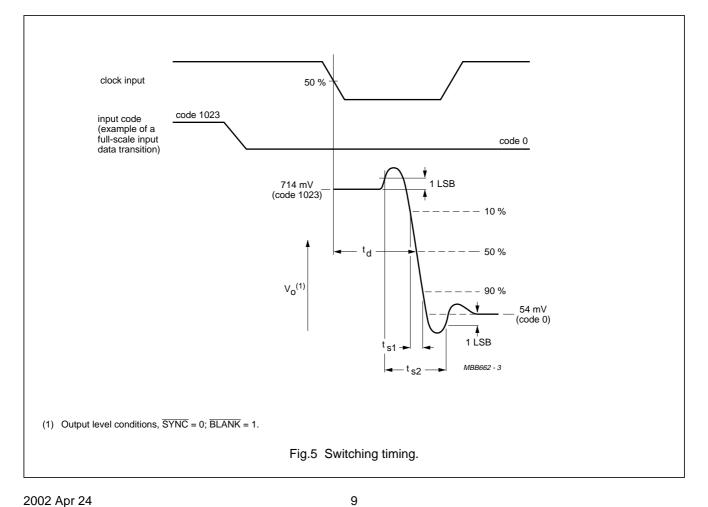

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Timing; se	ee Fig.4	1			· ·	<u> </u>
f _{clk(max)}	maximum clock frequency	SLT = 1; $R_L = 37.5 \Omega$	50	_	_	MHz
om(max)	·	SLT = 0; $R_L = 150 \Omega$	35	_	_	MHz
t _{CPH}	clock pulse width HIGH		6	_	_	ns
t _{CPL}	clock pulse width LOW		6	-	_	ns
t _r	clock rise time		_	_	4	ns
t _f	clock fall time		_	-	4	ns
t _{SU;DAT}	input data set-up time		4	-	_	ns
t _{HD;DAT}	input data hold time		2.5	_	_	ns
Outputs		•		•		•
OUTB, OU	ITR AND OUTG ANALOG OUTPU	TS (PINS 42, 46 AND 44, REFERENC	CED TO V _{SSA}) FOR 37.	5 Ω LOAD	
V _{OUTmax}	maximum output voltage	BLANK and SYNC active				
o o max	·	R and B channels	_	0.714	_	V
		G channel	_	1.0	_	V
THD	total harmonic distortion	f _i = 4.43 MHz; SLT = 1;	_	-60	_	dB
		$f_{clk} = 50 \text{ MHz}; R_L = 37.5 \Omega$				
		(filter; see Fig.8)				
Z_{L}	output load impedance	SLT = 1	_	37.5	_	Ω
		SLT = 0	_	150	_	Ω
Transfer f	unction					
INL	DC integral non-linearity	SLT = 1; $R_L = 37.5 \Omega$	-2	_	+2	LSB
DNL	DC differential non-linearity	SLT = 1; $R_L = 37.5 \Omega$	-1	_	+1	LSB
INL	DC integral non-linearity	SLT = 0; $R_L = 150 \Omega$	-2	_	+2	LSB
DNL	DC differential non-linearity	SLT = 0; $R_L = 150 \Omega$	-1	_	+2.3	LSB
α_{ct}	crosstalk DAC to DAC	SLT = 1; $R_L = 37.5 \Omega$;	_	-73	_	dB
		T _{amb} = 25 °C				
	DAC to DAC matching	$\frac{\text{SLT} = 1; R_{L} = 37.5 \Omega;}{\text{SYNC} = 0; BLANK} = 1$	-5.5	1.5	+5.5	%
Switching	characteristics; see Fig.5					
t _d	input to 50% output delay	full-scale change; SLT = 1;	_	3.5	_	ns
	time	$R_L = 50 \Omega$				
t _{s1}	settling time	10 to 90% full-scale change; SLT = 1; $R_L = 50 \Omega$	_	1.2	_	ns
t _{s2}	settling time	to ± 1 LSB; SLT = 1; R _L = 50 Ω	_	3	_	ns
Output tra	insients (glitches)					
V _g	area for 1 LSB change	SLT = 1; R _L = 50 Ω	_	300	_	LSB.ns

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

Table 1 Input coding and DAC output currents (typical values)

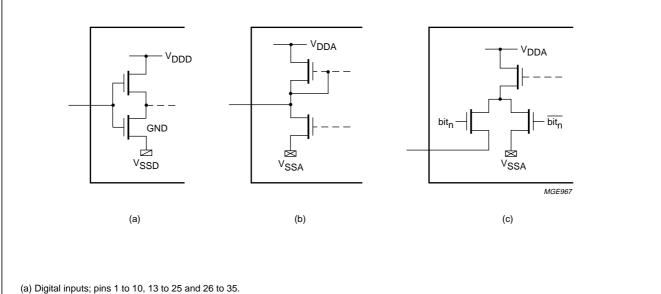

	BINAR	Y INPUT			JT CURRENT nA)	DAC OUTPUT CURRENT (mA)			
				SLT = 1; R	$R_L = 37.5 \Omega$	SLT = 0; R_L = 150 Ω			
SYNC	BLANK	DATA	CODE	R, B Channels	G Channel	R, B Channels	G Channel		
0	0	XXH	_	0	0	0	0		
1	0	XXH	_	0	7.62	0	1.90		
0	1	00H	0	1.44	1.44	0.36	0.36		
		_	_	_	_	_	_		
		3FFH	1023	19.05	19.05	4.76	4.76		
1	1	00H	0	1.44	9.05	0.36	2.26		
		_	_	_	_	_	_		
		3FFH	1023	19.05	26.67	4.76	6.67		



Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

TIMING



Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

INTERNAL PIN CIRCUITRY

- (b) I_{ref}; pin 39.
- (c) OUTR, OUTG and OUTB; pins 46, 44 and 42.

Fig.6 Internal circuitry.

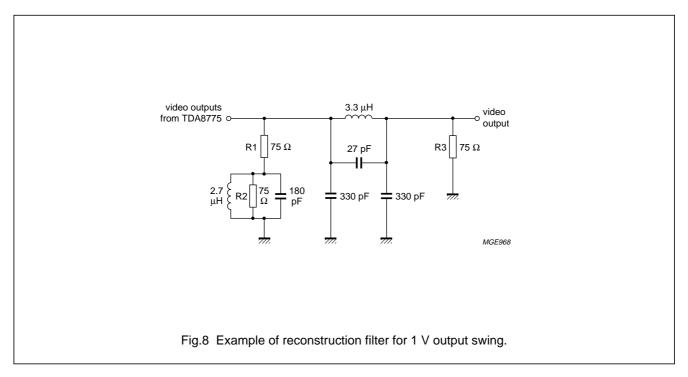
Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

APPLICATION INFORMATION

Analog and digital supplies should be separated and decoupled.

Supplies are not connected internally.


All ground pins must be connected. One ground plane is preferred although it depends on the application.

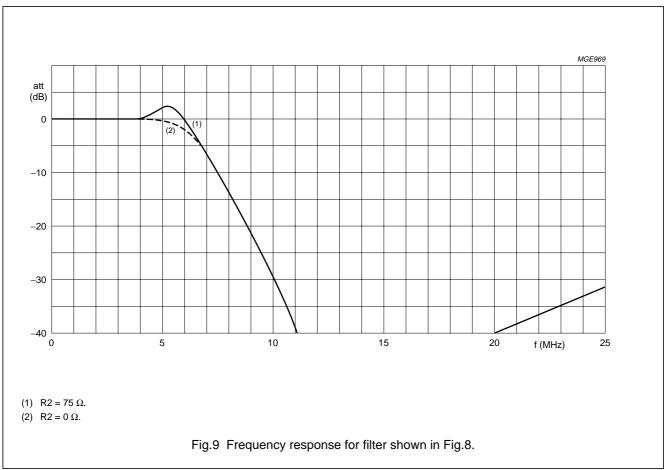
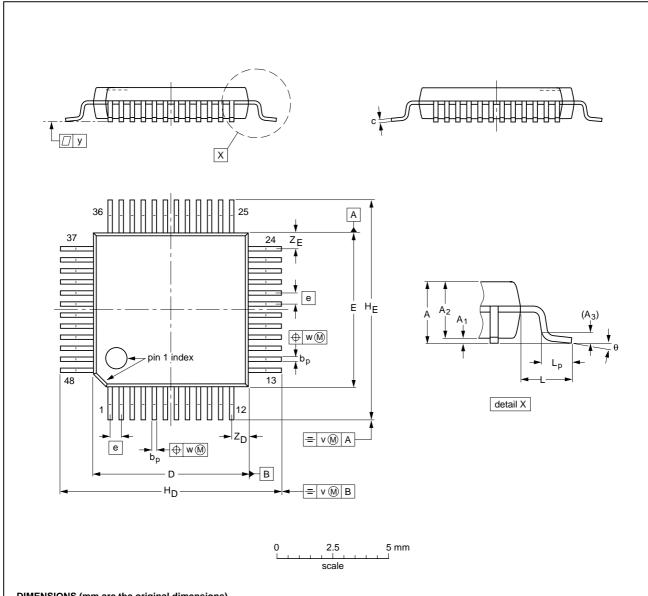

- (1) $R = 37.5 \Omega$; SLT = 1.
- (2) $R = 150 \Omega$; SLT = 0.

Fig.7 Application diagram.

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775


Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

PACKAGE OUTLINE

LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm

SOT313-2

DIMENSIONS (mm are the original dimensions)

	-																		
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	v	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.60	0.20 0.05	1.45 1.35	0.25	0.27 0.17	0.18 0.12	7.1 6.9	7.1 6.9	0.5	9.15 8.85	9.15 8.85	1.0	0.75 0.45	0.2	0.12	0.1	0.95 0.55	0.95 0.55	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT313-2	136E05	MS-026			99-12-27 00-01-19	

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

14

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300\ ^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD			
PACKAGE	WAVE	REFLOW ⁽¹⁾		
BGA, HBGA, LFBGA, SQFP, TFBGA	not suitable	suitable		
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS	not suitable ⁽²⁾	suitable		
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable		
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable		

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

DATA SHEET STATUS

DATA SHEET STATUS(1)	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

NOTES

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

NOTES

Triple 10-bit video Digital-to-Analog Converter (DAC)

TDA8775

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

SCA74

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

753504/02/pp20

Date of release: 2002 Apr 24

Document order number: 9397 750 09546

Let's make things better.

Philips Semiconductors

